Nova 200 NanoLab: SEM & EDS

From the KNI Lab at Caltech
Revision as of 21:50, 20 February 2020 by Jpalmer (talk | contribs)
Jump to navigation Jump to search
Nova 200
Nova-200-NanoLab.jpg
Instrument Type Microscopy
Techniques SEM, EDS, WDS,
Immersion Lens Imaging
Staff Manager Guy A DeRose, PhD
Staff Email derose@caltech.edu
Staff Phone 626-395-3423
Reserve time on LabRunr
Request training by email
Lab Location B203 Steele
Lab Phone 626-395-1542
Manufacturer FEI (now Thermo Fisher)
Model Nova 200 NanoLab

Description

The Nova 200 is the KNI's highest-resolution field-emission gun (FEG) analytical scanning electron microscope (SEM), equipped with an immersion lens for imaging sub-10 nm features and both energy dispersive spectroscopy (EDS) and wavelength dispersive spectroscopy (WDS) detectors for compositional analysis. It is also outfitted with a gallium focused ion beam (Ga-FIB) column, which is currently not operational because the Nova 600 NanoLab and ORION NanoFab together meet the KNI's Ga-FIB demand; Ga-FIB could be reactivated on the Nova 200 in the future. See a full list of training and educational resources for this instrument below.

SEM Applications
  • Ultra-High-Resolution Imaging (Immersion Mode aka UHR Mode)
  • High-Resolution Imaging (Field-Free Mode aka Normal Mode)
  • Secondary Electron (SE) imaging with an Everhart-Thornley Detector (ETD) & Through-the-Lens Detector (TLD)
  • Backscattered Electron (BSE) imaging with a TLD
  • Tungsten deposition via Gas Injection System (GIS)
  • Automated imaging with RunScript program & AutoScript language
EDS & WDS Applications
  • Spectrum acquisition for quantitative compositional analysis
  • Linescan acquisition for 1D spatial compositional analysis
  • Map acquisition for 2D spatial compositional analysis

Resources

SOPs & Troubleshooting
Video Tutorials
Graphical Handouts
Presentations
Manufacturer Manuals
Simulation Software
Calibrate Measurements with NIST Standard
  • The KNI has a NIST-traceable standard against which SEM measurements can be compared. See Slides 54-55 of the SEM Presentation for details. Ask staff for help finding and using the standard in the lab.
Sample Preparation
  • Use the Carbon Evaporator to make non-conductive samples conductive by applying 2-10 nm of evaporated carbon.
  • Use the O2/Ar Plasma Cleaner to remove hydrocarbons from the sample surface to avoid creating dark contamination spots on your features while imaging them.
Order Your Own Stubs
  • Stubs used for mounting specimens are considered a personal, consumable item in the KNI. There are some old stubs at each SEM, yet you should buy your own so that you can keep them clean and available to you. There are many stub geometries and configurations, some of which will be right for you to purchase and keep with your other cleanroom items.
Guide to Choosing KNI SEMs & FIBs

Specifications

Manufacturer Specifications
SEM Specifications
  • Minimum Feature Size Resolved in Immersion Mode: ~5 nm
  • Voltage Range: 0.2 to 30.0 kV
  • Current Range: ~10 pA to 20 nA
  • Apertures: 30 μm, 40 μm, 50 μm, 100 μm
  • Eucentric Height: ~4.8 mm working distance (WD)
  • Stage Range: ±25 mm X & Y travel, 50 mm Z travel, -12 to 58° tilt, 360° rotation
  • ETD Grid Bias Range: -150 to 300 V
  • TLD Bias Range: -100 to 150 V
  • Ultimate Vacuum: 5e-6 mbar



Related Instrumentation in the KNI

Scanning Electron Microscopes (SEMs)
Focused Ion Beam (FIB) Systems
Sample Preparation for Microscopy
Transmission Electron Microscopes
Scanning Probe Microscopes