ATC Orion 8: Dielectric Sputter System: Difference between revisions

From the KNI Lab at Caltech
Jump to navigation Jump to search
No edit summary
Line 72: Line 72:

===== Electron Beam Evaporation Systems =====
===== Electron Beam Evaporation Systems =====
* [[Metals (Al, Au, Pt & Ti): Kurt J Lesker Labline Electron Beam Evaporator|KJLC Labline Evaporator (Au, Ti, Pt, Al)]]
* [[Labline: Electron Beam Evaporator|Labline: Electron Beam Evaporator]]
* [[Metals & Oxides: CHA Industries Mark 40 Electron Beam Evaporator|CHA Mk40 Evaporator (Various metals and oxides)]]
* [[CHA: Electron Beam Evaporator|CHA: Electron Beam Evaporator]]

===== Chemical Vapor Deposition =====
===== Chemical Vapor Deposition =====
* [[Atomic Layer Deposition (ALD): Oxford Instruments FlexAL II|Oxford Instruments FlexAL Atomic Layer Deposition]]
* [[Atomic Layer Deposition (ALD): Oxford Instruments FlexAL II|Oxford Instruments FlexAL Atomic Layer Deposition]]
* [[Plasma-Enhanced Chemical Vapor Deposition (PECVD): Oxford Instruments System 100|Oxford Instruments Plasma-Enhanced CVD]]
* [[Plasma-Enhanced Chemical Vapor Deposition (PECVD): Oxford Instruments System 100|Oxford Instruments Plasma-Enhanced CVD]]

Revision as of 21:12, 20 September 2019

Dielectric Sputter System
Instrument Type Deposition
Techniques Magnetron Sputtering
(RF,DC, pulsed DC),
In-situ Plasma Etch &
Surface Cleaning,
Reactive Sputtering,
Staff Manager Alex Wertheim
Staff Email
Staff Phone 626-395-3371
Reserve time on LabRunr
Request training by email
Lab Location B235C Steele
Lab Phone 626-395-1539
Manufacturer AJA International
Model ATC Orion 8


The AJA UHV Orion dielectric sputter system is capable of reaching UHV pressures as low as 1E-10 Torr. It is equipped with a load lock that allows for automatic sample transfer. There are eight magnetron guns, seven 2" guns, and one 3" gun. A total of two RF and three DC power supplies can be used on any of the eight guns, some with an internal switch box allowing for one power source to be sequentially routed to different guns, enabling automatic processes without manual cable swapping. One of the DC guns is a pulsed DC supply. Uniformity across a 6" wafer is <5% variation for the 2" guns. Pre-mixed targets of specific alloys and compounds may be sputtered. In addition, having multiple power supplies allows for co-sputtering of up to five materials simultaneously. Reactive sputtering may be performed by introducing oxygen and/or nitrogen into the chamber during process, allowing oxides and nitrides to be formed from pure metal targets. The pulsed DC supply is ideally suited for such reactive processes where a dielectric material is synthesized. Co-sputtering multiple elements in a reactive process can produce complex ceramics. An RF power supply is also present specifically for generating a localized plasma at the substrate. This can be used as a surface cleaner, etcher, for techniques such as ion-assisted deposition, and to assist in the reactive formation of metal-nitrides. This tool is also capable of substrate heating up to 800 °C, which can be used to facilitate reactions, alloying, to control film stress, and to control crystal growth mechanisms.

Reasons to Utilize Sputtering
  • Ability to synthesize compounds and control compositions
  • Wide variety of high quality oxides & nitrides may be synthesized
  • Generally produces more uniform, better adhering films when compared to evaporation
  • More conformal sidewall coverage for coating patterned substrates
    • More conformal than evaporation, less conformal than CVD & ALD
  • Metal and dielectric deposition
  • Surface cleaning & in-situ plasma etch
  • Ion-Assisted Deposition


SOPs & Troubleshooting
Video Tutorials
Current Target Status

The following link will take you to a document which displays the current target configuration. This is updated after each time targets are rearranged.


Hardware Specifications
  • Typical base pressure: 1E-9 to 1E-10 Torr
  • All dry pumping system (cryo & turbo & roots & diaphragm pumps)
  • Load-lock-equipped system with automatic sample transfer
  • Substrate holder accepts 150 mm and 100 mm wafers, as well as small chips affixed via pressure clips
  • Substrate heating up to 800 °C provided by backside heating lamps
  • Semiconductor grade Ar, N2, O2 process gases
  • Eight Magnetron sputter guns
    • Seven confocally-oriented 2" guns (faces substrate at angle)
    • One centrally-located 3" gun (directly faces substrate)
  • Power Supplies:
    • Three RF Supplies
      • One 100 W supply for substrate plasma generation
      • One 600 W
      • One 300 W, equipped with 3-position switch router which enables sequential switching between 3 connected magnetrons
    • Two 1500 W DC
    • One 2000 W pulsed DC
      • Equipped with a two-position switch router that enables sequential switching between two connected magnetrons
      • Frequency range: 1-100 kHz
      • This unit is ideal for reactively sputtering dielectrics from metal targets

Related Instrumentation in the KNI

Sputtering Systems
Electron Beam Evaporation Systems
Chemical Vapor Deposition