Difference between revisions of "Nova 600 NanoLab: SEM, Ga-FIB, GIS & Omniprobe"

From the KNI Lab at Caltech
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 35: Line 35:


== Resources ==
== Resources ==
===== Equipment Data =====
===== Equipment Status =====
* [https://caltech.box.com/s/oy9kdmiwszygacoov2ko1a9njb8jghod Microscopy Pass-down equipment information]
* [https://labrunr.caltech.edu/Equipment_2.aspx LabRunr Equipment Status] (Select Nova 600 NanoLab from the dropdown menu)


===== SOPs & Manuals & SDS =====
===== SOPs & Manuals & SDS =====
Line 109: Line 109:
<br>
<br>
<br>
<br>
== Related Instrumentation in the KNI ==
===== Scanning Electron Microscopes (SEMs) =====
* [[Nova 600 NanoLab: SEM, Ga-FIB, GIS & Omniprobe|Nova 600 NanoLab: SEM, Ga-FIB, GIS & Omniprobe]]
* [[Nova 200 NanoLab: SEM, EDS & WDS | Nova 200 NanoLab: SEM & EDS]]
* [[Sirion: SEM & EDS | Sirion: SEM & EDS]]
* [[Quanta 200F: SEM, ESEM, Lithography & Probe Station | Quanta 200F: SEM, ESEM, Lithography & Probe Station]]
===== Focused Ion Beam (FIB) Systems =====
* [[Nova 600 NanoLab: SEM, Ga-FIB, GIS & Omniprobe|Nova 600 NanoLab: SEM, Ga-FIB, GIS & Omniprobe]]
* [[ORION NanoFab: Helium, Neon & Gallium FIB | ORION NanoFab: Helium, Neon & Gallium FIB]]
===== Sample Preparation for Microscopy =====
* [[Carbon Evaporator | Carbon Evaporator (Leica EM ACE600) to make samples conductive]]
* [[Tergeo Plus ICP- & CCP-RIE: Oxygen & Argon Plasma Cleaner | Oxygen & Argon Plasma Cleaner (Tergeo Plus ICP- & CCP-RIE) to remove hydrocarbons from surface]]
===== Transmission Electron Microscopes =====
* [[Tecnai TF-30: 300 kV TEM, STEM, EDS & HAADF | Tecnai TF-30: TEM, STEM, EDS & HAADF (50-300 kV)]]
<!---
* [[Tecnai TF-20: 200 kV TEM, STEM, EDS, EELS, EFTEM & Lithography | Tecnai TF-20: TEM, STEM, EDS, EELS, EFTEM & Lithography (40-200 kV)]]
--->
===== Scanning Probe Microscopes =====
* [[Dimension Icon: Atomic Force Microscope (AFM) | Dimension Icon: Atomic Force Microscope (AFM)]]
* [[Dektak 3ST: Profilometer | Dektak 3ST: Profilometer]]

Latest revision as of 05:19, 30 June 2022

Nova 600
YVO-Nanobeam-Resonator Jake-Rochman.jpg
Instrument Type Microscopy
Techniques SEM, Ga-FIB, Omniprobe,
Immersion Lens Imaging,
GIS, Cross-sectioning,
TEM Lamella Sample Prep
Staff Manager Annalena Wolff
Staff Email awolff@caltech.edu
Staff Phone 626-395-5994
Reserve time on LabRunr
Request training by email
Sign up for SEM-FIB email list
Lab Location B233B Steele
Lab Phone 626-395-1534
Manufacturer FEI (now Thermo Fisher)
Model Nova 600 NanoLab
Nova-NanoLab-600.jpg

Description

The Nova 600 is a "dual-beam" system that combines a field emission gun (FEG) scanning electron microscope (SEM) with a gallium focused ion beam (Ga-FIB). It can be used to capture high-quality images (clearly resolving sub-10 nm features) and perform site-specific etching and material deposition (creating sub-20 nm features). It is also equipped with an Omniprobe nanomanipulator, which can be used to lift out lamella samples that are prepared for use in a transmission electron microscope (TEM). See a full list of training and educational resources for this instrument below.

SEM Applications
  • Ultra-High-Resolution Imaging (Immersion Mode aka UHR Mode)
  • High-Resolution Imaging (Field-Free Mode aka Normal Mode)
  • Secondary Electron (SE) imaging with an Everhart-Thornley Detector (ETD) & Through-the-Lens Detector (TLD)
  • Backscattered Electron (BSE) imaging with a TLD
  • Platinum deposition via Gas Injection System (GIS)
  • Automated imaging with RunScript program & AutoScript language
Ga-FIB Applications
  • Directly etch patterns into material
  • Cutting & Imaging Cross-Sections
  • TEM Lamella Sample Preparation using an Omniprobe for Liftout
  • Platinum & SiOx deposition via GIS
  • Enhanced etch with XeF2 via GIS
  • Automated patterning with RunScript program & AutoScript language

Resources

Equipment Status
SOPs & Manuals & SDS
Video Tutorials
Graphical Handouts
Presentations


Simulation Software
Calibrate Measurements with NIST Standard
  • The KNI has a NIST-traceable standard against which SEM and Ga-FIB measurements can be compared. See Slides 54-55 of the SEM Presentation for details. Ask staff for help finding and using the standard in the lab.
Sample Preparation
  • Use the Carbon Evaporator to make non-conductive samples conductive by applying 2-10 nm of evaporated carbon.
  • Use the O2/Ar Plasma Cleaner to remove hydrocarbons from the sample surface to avoid creating dark contamination spots on your features while imaging them.
Stubs for specimen mounting
  • Stubs used for mounting specimens are considered a personal, consumable item in the KNI. There are some stubs at each Microscope which can be used by any KNI microscopy user. You can also buy your own stubs so that you can keep them clean and available to you. There are many stub geometries and configurations. If you chose to buy your own stubs, please show them to the staff microscopist prior to using them: some stubs including stubs with copper clips have large height differences and can only be used safely in specific operating conditions.
Guide to Choosing KNI SEMs & FIBs

Specifications

Manufacturer Specifications
SEM Specifications
  • Minimum Feature Size Resolved in Immersion Mode: ~5 nm
  • Voltage Range: 0.2 to 30.0 kV
  • Current Range: ~10 pA to 20 nA
  • Apertures: 10 μm, 15 μm, 20 μm, 30 μm
  • Eucentric Height: ~5.15 mm working distance (WD)
  • Stage Range: ±80 mm X & Y travel, 12 mm Z travel, -12 to 58° tilt, 360° rotation
  • ETD Grid Bias Range: -150 to 300 V
  • TLD Bias Range: -100 to 150 V
  • Ultimate Vacuum: 5e-7 mbar
Ga-FIB Specifications
  • Minumum Probe Size Achieved: ~7 nm
  • Minimum Feature Size Etched: ~25 nm
  • Minimum Feature Size Resolved by Imaging: ~10 nm
  • Voltage Range: 5 to 30 kV
  • Current Range: 1 pA to 20 nA
  • Eucentric Height: ~5.15 mm working distance (WD)
  • Stage Tilt to be perpendicular to Ga-FIB: 52°
  • ETD Grid Bias Range: -150 to 300 V
  • TLD Bias Range: -100 to 150 V